

MERI College of Engineering and Technology (MERI - CET)

Lesson Plan

Name of the Faculty	:	Mr. Pardeep			
Discipline	:	Mechanical Engineering			
Semester	:	3 rd			
Subject	:	Engineering Mechanics (ESC-ME- 209G)			
Lesson Plan Duration	:	15 Weeks (from Aug. 2020 to Nov. 2020)			
** Work Load (Lecture) per week (in hours): Lectures-02, Practicals-00					

Week	Theory		Practical	
	Lecture	Торіс	Practical	Торіс
	Day	(including assignment/test)	day	_
1 st	1 st	Introduction: Force system,		No Practical
		dimensions and units in		
		mechanics, laws of mechanics,		
		vector		
		algebra.		
	2^{nd}	Addition and subtraction of		
		forces, cross and dot products of		
		vectors, moment of a		
		force about a point and axis,		
		couple and couple moment,		
		transfer of a force to a parallel		
and	and	position.		
2110	310	Resultant of a force system using		
		vector method, Problems		
		involving vector		
		application.		
	⊿ th	Fauilibrium: Static and dynamic		
	т	equilibrium static in determinacy		
		equinorium, state in determinacy		
3 rd	5 th	General equations of		
		equilibrium, Varingnon's theorem.		

MERI College of Engineering and Technology (MERI - CET)

	6 th	Lami's theorem, equilibrium of bodies under a force system, Problems.	
4 th	7 th	Truss and Frames:Truss, classification of truss.	
	8 th	Assumptions in truss analysis, perfect truss.	
5 th	9 th	Analysis of perfect plane truss using method of joints and method of sections.	
	10 th	Centroid, Centre of mass and Centre of gravity, Determination of centroid.	
6 th	11 th	Centre of mass and centre of gravity.	
	12 th	Integration method of regular and composite figures and solid objects, Problems.	
7 th	13 th	Moment of Inertia: Area moment of inertia, mass moment of inertia.	
	14 th	Parallel axis and perpendicular axis theorems.	
8 th	15 th	Radius of gyration, polar moment of inertia, product of inertia, principle axis.	

MERI College of Engineering and Technology (MERI - CET)

	16 th	Problem based on composite figures and solid objects.	
9 th	17 th	Kinematics: Concept of rigid body, velocity and acceleration.	
	18 th	Relative velocity, translation and rotation of rigid bodies.	
10 th	19 th	Equations of motion for translation and rotation, problems.	
	20 th	Particle Dynamics: Energy methods and momentum methods.	
11 th	21 th	Newton's laws, work energy equation for a system of particles.	
	22 nd	Linear and angular momentum equations, projectile motion, problem.	
12 th	23 nd	Shear Force and Bending Moment Diagram for statically determinant beams.	
	24 nd	Classification of beams, types of loads.	
13 th	25 nd	Shear force and bending moment calculation and their graphical presentation.	
	26 nd	Point of inflection, problem.	
14^{th}	27 nd	Revision.	
	28^{nd}	Revision.	
15 th	29 nd	Revision.	
	30 nd	Revision.	